

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

THE EXTRACTION OF Fe^3 AND La^3 BY SYNERGETIC EFFECTS OF TBP AND *p*-TERT-BUTYLCALIX[8]ARENE OCTACARBOXYLIC ACID

Zhu Zhiliang^a; Ye Jian^a; Gu Jinying^a; Lu Guodi^a; Chen Yude^a

^a Department of Chemistry, Tongji University, Shanghai, PR China

Online publication date: 30 November 2001

To cite this Article Zhiliang, Zhu , Jian, Ye , Jinying, Gu , Guodi, Lu and Yude, Chen(2001) 'THE EXTRACTION OF Fe^3 AND La^3 BY SYNERGETIC EFFECTS OF TBP AND *p*-TERT-BUTYLCALIX[8]ARENE OCTACARBOXYLIC ACID', Separation Science and Technology, 36: 12, 2761 – 2772

To link to this Article: DOI: 10.1081/SS-100107224

URL: <http://dx.doi.org/10.1081/SS-100107224>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**THE EXTRACTION OF Fe^{3+} AND La^{3+} BY
SYNERGETIC EFFECTS OF TBP AND *p*-
TERT-BUTYLCALIX[8]ARENE
OCTACARBOXYLIC ACID**

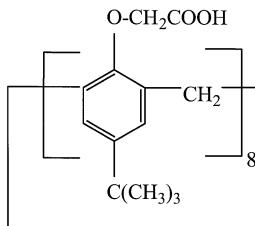
**Zhu Zhiliang, Ye Jian, Gu Jinying, Lu Guodi,
and Chen Yude***

Department of Chemistry, Tongji University, Shanghai,
200092, PR China

ABSTRACT

The extraction of Fe^{3+} and La^{3+} with *p*-*tert*-butylcalix[8]arene octacarboxylic acid (H_8L) and tributyl phosphate (TBP) was studied at $30 \pm 1^\circ\text{C}$ and ionic strength of 0.1. Fe^{3+} and La^{3+} are highly extractable with H_8L ; $\text{Fe}^{3+} > \text{La}^{3+}$. The results showed that TBP had a significant synergetic effect on the extraction of Fe^{3+} by H_8L . By the slope method, the extraction mechanism is given as $\text{Fe}^{3+} + \text{H}_8\text{L}_{(\text{O})} + 2\text{TBP}_{(\text{O})} = (\text{TBP})_2\text{Fe H}_5\text{L}_{(\text{O})} + 3\text{H}^+$. The equilibrium constant of the extraction reaction was $\log K_{\text{ex(s)}} = 4.68 \pm 0.12$. However, TBP showed no synergetic effect on the extraction of La^{3+} with H_8L .

Key Words: Synergetic extraction; TBP; Calixarene; Iron; Lanthanum


*Corresponding author. E-mail: zzl@mail.tongji.edu.cn

INTRODUCTION

Due to their special properties, calixarenes can form host-guest complexes with both neutral guest molecules and ions (1). As a relatively new generation of macrocyclic compounds (compared with cyclodextrins and crown ethers), calixarenes will play an important role in the fields of ion transportation, chemical sensors, separation and analysis of noble and rare metals, selective ion electrodes, molecule inclusion and recognition, molecular catalysis, and enzyme simulation (2-5). The coordination chemistry of calixarenes (6-9) has been rapidly developed in recent years. A great deal of attention has been paid to the extraction studies of transition metals and lanthanides with calixarenes (10-15). The recent research may provide new methods of separation and purification for the rare earth elements and information on supramolecular chemistry. In contrast to a number of reports on the solvent extraction of metal ions with calixarenes, reports on the synergistic effect between calixarenes and other extractants have been very limited. We studied the synergistic extraction of Fe^{3+} and La^{3+} with *p*-*tert*-butylcalix[8]arene octacarboxylic acid (H_8L) and tributyl phosphate (TBP) for the high-efficiency separation of lanthanum from various impurities.

EXPERIMENTAL

Figure 1 illustrates the formula of *p*-*tert*-butylcalix[8]arene octacarboxylic acid (H_8L). H_8L was synthesized according to procedures outlined in the literature. The characteristics of H_8L are as follows: The melting point is 255-256°C; the infrared (IR) spectra (KBr) peaks are located at 1737 cm^{-1} and (Br, OH) $2700\text{-}3600\text{ cm}^{-1}$; ^1H NMR δ [$(\text{CD}_3)_2\text{SOCDCl}_3$] values are 6.96 (16H, s, ArH), 2.87-4.07 (32H, Br, ArCH_2Ar , CH_2COOH), and 1.15 (72H, s, CMe_3). These data are in good agreement with the results cited in the literature (16). IR spectra were recorded on a Nicolet-170 SXFT spectrometer and ^1H NMR spectra were determined on a Bruker AM500 (MHz) spectrometer.

Figure 1. The formula of *p*-*tert*-butylcalix[8]arene octacarboxylic acid (H_8L).

Table 1. Extractabilities of Fe^{3+} with H_8L

pH	3.15	3.31	3.55	3.76
E(%)	70.8	76.4	80.9	83.8

$C_{\text{H}_8\text{L}}^0 = 1.11 \times 10^{-4} \text{ mol/L}$; $C_{\text{Fe}}^0 = 1.196 \times 10^{-4} \text{ mol/L}$; $\mu = 0.1$; 30°C for 1 hour

The extractor solution was prepared by dissolving H_8L in chloroform at refluxing temperature. Chloroform was purified by distillation before use. Ion exchanged and redistilled water was used for the aqueous solution of $\text{Fe}(\text{NO}_3)_3$ and $\text{La}(\text{NO}_3)_3$. The pH of the aqueous solution was buffered with $\text{CH}_3\text{COONa}/\text{CH}_3\text{COOH}$, and ionic strength (μ) was adjusted to 0.1 with KNO_3 . At equal phase volumes of 10 mL, the extraction experiments were carried out in stopped flasks at $30 \pm 1^\circ\text{C}$ and $\mu = 0.1$. The flasks containing the 2 phase system were subsequently placed on a shaker and shaken until the extractability was not affected by further shaking, indicating that equilibrium had been attained. The concentrations of metal cations in aqueous solution were determined by the spectrophotometric method on a UV/VIS Spectrometer Lambda Bio 40 (Perkin Elmer Co). Arsenazo III was used as a color reagent for La^{3+} ($\lambda_{\text{max}} = 650 \text{ nm}$) and *o*-phenanthroline for Fe^{3+} ($\lambda_{\text{max}} = 510 \text{ nm}$). The extractabilities (Ex%) were determined from the decrease of metal concentration in the aqueous phase after the extraction.

RESULTS AND DISCUSSION

Comparison of the Extractabilities of Fe^{3+} and La^{3+} with H_8L

The extractabilities of Fe^{3+} and La^{3+} with H_8L under different pH values are listed in Tables 1 and 2. The results indicate that H_8L was a more efficient extractor of Fe^{3+} than La^{3+} , and equilibrium for the extraction of Fe^{3+} was reached more quickly than it was for La^{3+} . Furthermore, the extractabilities of both cations increased with increased pH in aqueous solution.

Table 2. Extractabilities of La^{3+} with H_8L

pH	3.40	3.61	3.93	4.23
E(%)	55.8	58.7	64.8	69.4

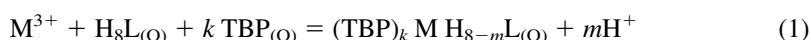
$C_{\text{H}_8\text{L}}^0 = 1.11 \times 10^{-4} \text{ mol/L}$; $C_{\text{La}}^0 = 1.214 \times 10^{-4} \text{ mol/L}$; $\mu = 0.1$; 30°C for 12 hours

Table 3. The Effect of TBP on the Extraction of Fe^{3+} with H_8L

C_{TBP}^0 (10^{-4} mol/L)	0	1.60	2.41	3.21	4.01
D	0.706	0.782	0.986	1.30	1.78
D_s		0.076	0.28	0.594	1.07

$C_{\text{H}_8\text{L}}^0 = 1.24 \times 10^{-4}$ mol/L; $C_{\text{Fe}}^0 = 1.196 \times 10^{-4}$ mol/L; pH = 2.63; $\mu = 0.10$; 30°C for 1 hour

The Synergetic Effect of TBP on the Extraction of Fe^{3+} and La^{3+} with H_8L


Table 3 shows the distribution ratios of Fe^{3+} under different TBP concentrations and the fixed initial concentration of H_8L and the pH of the solution. $D_s = D - D_0$, where D represents the total distribution ratio and D_0 is the sum of distribution ratios of Fe^{3+} when either H_8L or TBP was used under the same experimental conditions. Table 4 shows the effect of TBP on the extraction of La^{3+} with H_8L .

The results of Tables 3 and 4 show that TBP had a significant synergetic effect on the extraction of Fe^{3+} with H_8L but not on La^{3+} extraction. Furthermore, TBP extracted nearly no Fe^{3+} when only TBP was used under the conditions listed in Table 3.

The Synergetic Mechanism of TBP on the Extraction of Fe^{3+} with H_8L

Theory

For further understanding the synergetic effect of TBP on the extraction of Fe^{3+} with H_8L , the following extraction reaction was considered (17)

and the conditional equilibrium constant K_s can be expressed as

$$K_s = \frac{[(\text{TBP})_k \text{M H}_{8-m}\text{L}_{(\text{O})}][\text{H}^+]^m}{[\text{M}^{3+}][\text{H}_8\text{L}_{(\text{O})}][\text{TBP}_{(\text{O})}]^k} \quad (2)$$

Table 4. The Effect of TBP on the Extraction of La^{3+} with H_8L

C_{TBP}^0 (mol/L)	0	0.0010	0.0080	0.016	0.041
D	0.63	0.62	0.61	0.61	0.63

$C_{\text{H}_8\text{L}}^0 = 6.54 \times 10^{-5}$ mol/L; $C_{\text{La}}^0 = 1.214 \times 10^{-4}$ mol/L; 30°C for 12 hours

The distribution ratio of the synergistic extraction D_s is

$$D_s = \frac{[(TBP)_k MH_{8-m} L_{(O)}]}{[M^{3+}]}$$

By substituting D_s into Eq. (2) and calculating the logarithm of each side of Eq. (2), one gets

$$\log K_s = \log D_s + m \log [H^+] - \log [H_8L]_{(O)} - k \log [TBP]_{(O)} \quad (3)$$

The relationships between the equilibrium concentration $[H_8L]_{(O)}$, $[TBP]_{(O)}$, and the initial concentrations $C_{H_8L}^0$, C_{TBP}^0 , and C_{Fe}^0 are

$$[H_8L]_{(O)} = C_{H_8L}^0 - \frac{D}{D+1} C_{Fe}^0 \quad (4)$$

$$[TBP]_{(O)} = C_{TBP}^0 - \frac{D}{D+1} k C_{Fe}^0 \quad (5)$$

Due to the influence of subsidiary reaction coefficients on D_s , the actual equilibrium distribution ratio D_{ex} becomes $D_s \alpha$. Here, α denotes the subsidiary reaction coefficients and is related to the subsidiary reactions caused by the anions OH^- and Ac^- . When the values of $C_{H_8L}^0$ and pH are fixed, $\log \alpha$ will remain constant. D_0 did not change under different C_{TBP}^0 . So the actual equilibrium constant $K_{ex(S)}$ and the corresponding $\log K_{ex(S)}$ can be expressed as

$$\log K_{ex(S)} = \log D_{ex(S)} + m \log [H^+] - \log [H_8L]_{(O)} - k \log [TBP]_{(O)} \quad (6)$$

A linear relationship exists in the plot of $\log D_{ex(S)}$ vs. $\log [TBP]_{(O)}$. Because the concentration difference between $C_{H_8L}^0$ and C_{Fe}^0 was not big enough, $D_{ex(S)}$ was rectified. The equation

$$D'_{ex(S)} = \frac{C_{H_8L}^0}{[H_8L]_{(O)}} \times D_s \times \alpha$$

was used to plot $\log D'_{ex(S)}$ vs. $\log [TBP]_{(O)}$.

The relationship of $\log D'_{ex(S)}$ vs. $\log [H_8L]_{(O)}$ is described by the equation

$$D'_{ex(S)} = \left[\frac{C_{TBP}^0}{[TBP]_{(O)}} \right]^k \times D_s \times \alpha$$

which was used to plot $\log D'_{ex(S)}$ vs. $\log [H_8L]_{(O)}$. α will remain constant while pH is fixed. Through the use of

$$D'_s = \frac{C_{H_8L}^0}{[H_8L]_{(O)}} \times D_s$$

and

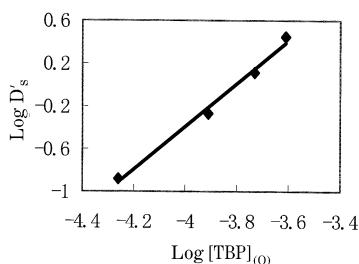
$$D'_s = \left[\frac{C_{TBP}^0}{[TBP]_{(O)}} \right]^k \times D_s$$

Table 5. The H₈L and TBP Synergetic Extraction of Fe³⁺ at Different TBP Concentrations

C_{TBP}^0 (10 ⁻⁴ mol/L)	0	1.60	2.41	3.21	4.01
D	0.706	0.782	0.986	1.30	1.78
D_s		0.076	0.28	0.594	1.07
$\log D'_s$		-0.880	-0.270	0.115	0.447
$\log [TBP]_{(O)}$		-4.26	-3.91	-3.73	-3.61

$C_{\text{TBP}}^0 = 1.24 \times 10^{-4}$ mol/L; $C_{\text{Fe}}^0 = 1.196 \times 10^{-4}$ mol/L; pH = 2.63; $\mu = 0.10$; 30°C for 1 hour

instead of $D'_{\text{ex(s)}}$, the plots of $\log D'_s$ vs. $\log [TBP]_{(O)}$ and $\log D'_s$ vs. $\log [H_8L]_{(O)}$ can be obtained. Through the equation


$$D'_{\text{ex(s)}} = \left[\frac{C_{H_8L}^0}{[H_8L]_{(O)}} \right] \times \left[\frac{C_{\text{TBP}}^0}{[TBP]_{(O)}} \right]^k \times D_s \times \alpha$$

The relationship of $\log D'_{\text{ex(s)}}$ vs. pH can be obtained by the plot of $\log D'_{\text{ex(s)}}$ vs. pH. The equilibrium constants of the synergetic extraction can be calculated from Eq. (6).

Mechanism of Synergetic Extraction

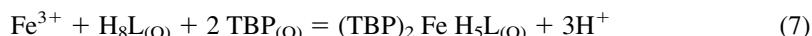
Table 5 and Fig. 2 show the results of the synergetic extraction of Fe³⁺ by H₈L at different TBP concentrations when $C_{H_8L}^0$ and pH were fixed. The plot of $\log D'_s$ vs. $\log [TBP]_{(O)}$ is a straight line with a slope of 2, and a correlation coefficient of $R^2 = 0.991$, indicating that the ratio of Fe³⁺ to TBP in the extract is 1:2.

Table 6 and Fig. 3 show the results of the synergetic extraction of Fe³⁺ by H₈L at different H₈L concentrations when C_{TBP}^0 and pH were fixed. The plot of

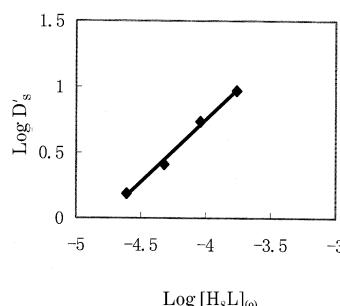
Figure 2. H₈L and TBP synergetic extraction of Fe³⁺ at different TBP concentrations.

Table 6. The H₈L and TBP Synergetic Extraction of Fe³⁺ at Different H₈L Concentrations

$C_{H_8L}^0 (10^{-4} \text{ mol/L})$	0.896	1.24	1.79	2.69
D	1.19	1.73	2.86	4.35
D_0	0.487	0.706	1.16	1.87
D_s	0.703	1.02	1.70	2.48
$\log D'_s$	0.188	0.412	0.737	0.971
$\log [H_8L]_{(O)}$	-4.61	-4.32	-4.04	-3.76


$C_{TBP}^0 = 4.01 \times 10^{-4} \text{ mol/L}$; $C_{Fe}^0 = 1.196 \times 10^{-4} \text{ mol/L}$; pH = 2.63; $\mu = 0.10$; 30°C for 1 hour. D_0 is the distribution ratio when no TBP exists in the organic phase under the same conditions as when it is present.

$\log D'_s$ vs. $\log [H_8L]_{(O)}$ is a straight line with a slope of 1 and correlation coefficient of $R^2 = 0.994$, indicating that the ratio of Fe³⁺ to H₈L in the extract is 1:1.


Table 7 and Fig. 4 show the results of the synergetic extraction of Fe³⁺ with H₈L and TBP at different pH values when C_{TBP}^0 and $C_{H_8L}^0$ were fixed.

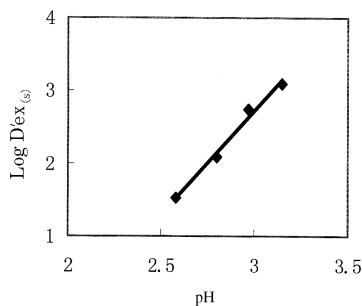
The plot of $\log D'_{ex(s)}$ vs. pH is a straight line with a slope of 3 and correlation coefficient of $R^2 = 0.988$, suggesting that 3 H⁺ were displaced from H₈L by Fe³⁺.

According to the above results, the synergetic extraction equation can be expressed as

The corresponding equilibrium constants of the synergetic extraction were obtained from Eq. (7) and Table 5 and are listed in Table 8.

Figure 3. The synergetic H₈L and TBP extraction of Fe³⁺ at different H₈L concentrations.

Table 7. H₈L and TBP Synergetic Extraction of Fe³⁺ at Different pH Values


pH	2.58	2.80	2.97	3.15
D	1.75	2.59	4.04	4.58
D ₀	0.695	1.36	1.86	2.53
D _s	1.06	1.23	2.18	2.05
log α	0.683	0.999	1.20	1.51
log D'ex _(S)	1.53	2.09	2.74	3.09

$C_{\text{TBP}}^0 = 4.01 \times 10^{-4}$ mol/L; $C_{\text{H}_8\text{L}}^0 = 1.24 \times 10^{-4}$ mol/L; $C_{\text{Fe}}^0 = 1.196 \times 10^{-4}$ mol/L; $\mu = 0.10$; 30°C for 1 hour. D_0 is the distribution ratio when no TBP exists in the organic phase under the same other conditions as when it is present.

The Difference of Synergetic Effect of TBP and H₈L on Lanthanum and Iron Ions

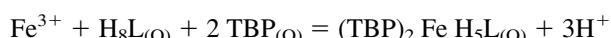
As a host, H₈L usually can provide 8 possible coordination sites to guest ions. The size of the cavity formed by the upper rim of H₈L, the part containing carboxyl groups, has a close correlation with the coordination numbers of the related complexes. The lanthanum ion with a radius of 0.115 nm is much bigger than the iron ion with a 0.064-nm diameter. Lanthanum might be included in the coordination space of the upper rim of H₈L to satisfy the 8 coordinating sites, which results in the inability of TBP to take part in the synergetic extraction of lanthanum ions with H₈L.

Fe³⁺, with a relatively smaller size of radius, usually has a coordination number of 6 and cannot combine with all the possible coordination carboxyl groups of H₈L. Some H₈L carboxyl groups may be close to Fe³⁺ and form coordination bonds, while other carboxyl groups may be distant from Fe³⁺ and left

Figure 4. The H₈L and TBP synergetic extraction of Fe³⁺ at different pH values.

Table 8. Equilibrium Constants of the Synergetic Extraction

$\log D_s$	0.447	0.115	-0.270	-0.88
$\log \alpha$	0.690	0.690	0.690	0.690
pH	2.63	2.63	2.63	2.63
$\log [H_8L]_{(O)}$	-4.32	-4.25	-4.19	-4.15
$\log [TBP]_{(O)}$	-3.61	-3.73	-3.91	-4.26
$\log K_{ex(S)}$	4.78	4.62	4.56	4.59


$$\log K_{ex(S)} = 4.68 \pm 0.12$$

in an uncoordinated state. Three carboxyl groups of H_8L may replace the coordination water molecules in the hydrated iron ion, and TBP may also occupy 2 coordination sites, displacing water molecules, but the last coordination site of the iron ion may still be satisfied with a water molecule. Because TBP has relatively low polarity and a higher solubility in the organic phase, the synergistically applied TBP and H_8L will effectively increase the total extractability of Fe^{3+} .

Size is not the only factor to affect the stability of the complexes. Because Fe^{3+} has a higher charge/radius ratio than does La^{3+} , it usually showed a stronger tendency to form a stable complex when the coordination space of the extractant species is sufficient for complexation. H_8L has sufficient space to include La^{3+} or Fe^{3+} ions and the charge/radius ratio was the main factor affecting complex stability. The cavity size of H_8L might become an important factor for metal ion extraction. The relatively bigger size cavity of H_8L for Fe^{3+} ions may allow TBP molecules to participate in the synergetic extraction, but La^{3+} may be excluded from the complex.

CONCLUSIONS

The conclusion can be summarized in 3 points. First, *p-tert*-butylcalix[8]arene octacarboxylic acid (H_8L) can effectively extract both Fe^{3+} and La^{3+} into the organic phase from acidic aqueous solution, and the extractability of Fe^{3+} is significantly higher than it is for La^{3+} . Second, TBP has a significant synergetic effect on the extraction of Fe^{3+} with H_8L but not of La^{3+} . Finally, the mechanism of synergetic extraction can be given as

The corresponding equilibrium constant of this synergetic extraction is $\log K_{ex(S)} = 4.68 \pm 0.12$ under $30 \pm 1^\circ C$ and $\mu = 0.1$.

NOMENCLATURE

Symbols

E	extractability
D	total distribution ratio, i.e., the total concentration of metal ions in the organic phase to that in aqueous phase
D_0	blank distribution ratio (amount extracted by TBP plus amount extracted by H_8L)
D_s	distribution ratio due to the synergetic extraction
$C_{H_8L}^0, C_{TBP}^0$, and C_{Fe}^0	the initial concentrations of H_8L , TBP, and Fe^{3+}
K_s	conditional equilibrium constant of the synergetic extraction
$K_{ex(s)}$	the actual equilibrium constant that accounts for the effect of the subsidiary reaction
$D_{ex(s)}$	the actual distribution ratio that results from the effect of the subsidiary reaction

Greek Letters

μ	ionic strength
α	subsidiary reaction coefficient

ACKNOWLEDGMENT

The project was supported by National Natural Science Foundation of China.

REFERENCES

1. Gutsche, C.D. *Calixarenes*; The Royal Society of Chemistry: Cambridge, UK, 1989.
2. Perrin, R.; Lamartine, R.; Perrin, M. The Potential Industrial Application of Calixarenes. *Pure Appl. Chem.* **1993**, *65* (7), 1549–1572.
3. Bohmer, W. Calixarenes, Macrocycles with (Almost) Unlimited Possibilities. *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 713–745.
4. Otsuka, H.; Suzuki, Y.; Ikeda, A.; Araki, K.; Shinkai, S. Guest Inclusion Properties of Calix[6]arene-Based Unimolecular Cage Compounds. On

Their High Cs^+ and Ag^+ Selectivity and Very Slow Metal Exchange Rates. *Tetrahedron* **1998**, *54* (3 & 4), 423–446.

- 5. Sano, M.; Okamura, J.; Shinkai, S. Formation of Ordered Nanometer-Sized Polymer Dots on Silicon by Friction Rubbing Method. *Chem. Lett.* **1998**, (1), 21–22.
- 6. Yilmaz, M.; Deligoz, H. Studies on Compounds of Uranium (VI) with Two Vic-Dioxime Derivatives of Calix[4]arene. *Synth. React. Inorg. Met.* **1998**, *28* (5), 851–861.
- 7. Kawaguchi, M.; Ikeda, A.; Shinkai, S. Synthesis and Metal-Binding Properties of [60]Fullerene-Linked Calix[4]arenes: An Approach to “Exohedral Metallofullerenes.” *J. Chem. Soc. Perkin Trans. I* **1998**, (2), 179–184.
- 8. Pelizzi, N.; Casnati, A.; Friggeri, A.; Ungaro, R. Synthesis and Properties of New Calixarene-Based Ditopic Receptors for the Simultaneous Complexation of Cations and Carboxylate Anions. *J. Chem. Soc. Perkin Trans. II* **1998**, (6), 1307–1311.
- 9. Cacciapaglia, R.; Mandolini, L.; Arnecke, R.; Bohmer, V.; Vogt, W. Barium (II) Complexes of Calixcrowns Derived from *p*-tert-Butylcalix[5]arene as Potential Transacylation Catalysts. Regio- and Stereoselective Monoacetylation of the Calixcrown. *J. Chem. Soc. Perkin Trans. II* **1998**, (2), 419–424.
- 10. Delmau, L.H.; Simon, N.; Schwing-Weill, M.J.; Arnaud-Neu, F.; Dozol, J.F.; Eymard, S.; Tournois, B.; Gruttner, C.; Musigmann, C.; Tunayar, A.; Bohmer, V. Extraction of Trivalent Lanthanides and Actinides by “CMPO-Like” Calixarenes. *Sep. Sci. Technol.* **1999**, *34* (6 & 7), 863–876.
- 11. Barboso, S.; Carrera, A.G.; Matthews, S.E.; Arnaud-Neu, F.; Bohmer, V.; Dozol, J.F.; Rouquette, H.; Schwing-Weill, M.J. Calix[4]arenes with CMPO Functions at the Narrow Rim. Synthesis and Extraction Properties. *J. Chem. Soc. Perkin Trans. II* **1999**, (4), 719–724.
- 12. Kakoi, T.; Toh, T.; Kubota, F.; Goto, M.; Shinkai, S.; Nakashio, F. Liquid-Liquid Extraction of Metal Ions with a Cyclic Ligand Calixarene Carboxyl Derivative. *Anal. Sci.* **1998**, *14* (3), 501–506.
- 13. Kakoi, T.; Oshima, T.; Nishiyori, T.; Kubota, F.; Goto, M.; Shinkai, S.; Nakashio, F. Effect of Sodium Ions on the Extraction of Rare Earth Metals by Liquid Surfactant Membranes Containing a Calix[4]arene Carboxyl Derivative. *J. Membr. Sci.* **1998**, *143* (1 & 2), 125–135.
- 14. Kakoi, T.; Nishiyori, T.; Oshima, T.; Kubota, F.; Goto, M.; Shinkai, S.; Nakashio, F. Extraction of Rare-Earth Metals by Liquid Surfactant Membranes Containing a Novel Cyclic Carrier. *J. Membr. Sci.* **1997**, *136* (1 & 2), 261–271.
- 15. Yilmaz, M.; Deligoz, H. Selective Extraction of Fe^{3+} Cation by Calixarene Based Cyclic Ligands. *Sep. Sci. Technol.* **1996**, *31* (17), 2395–2402.

2772

ZHU ET AL.

16. Chang, S.K.; Cho, W. New Metal Cation-Selective Ionophores Derived from Calixarenes: Their Synthesis and Ion Binding Properties. *J. Chem. Soc. Perkin Trans I* **1986**, 211–214.
17. Zhu, Z.L.; Ye, J.; Gu, J.; Lu, G.; Chen, Y. Extraction of Fe^{3+} and La^{3+} with *p-tert-Butylcalix[8]arene Octacarboxylic Acid*. *J Nucl. Radiochem. (China)* **2000**, 22 (3), 36–40.

Received May 2000

Revised August 2000

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100107224>